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Fig. 1.

Outputs of the proposed monocular object localization system. The system is capable of estimating the shape and pose (without scale-factor

ambiguity) of objects located on surfaces that are non-coplanar with the moving ego vehicle. Top: Projection of the estimated shapes (wireframes) of cars.
Above each car, distance of the car from the camera is shown (in meters). Bottom: Estimated wireframe and road points in 3D. For the first and third
columns, estimated wireframes are compared with their respective ground truth 3D bounding boxes (in red), highlighting the accurate localization of the
objects. In the second scene, we show the estimated cars in 3D, overlaid on a dense ground truth 3D point cloud consisting of road surface and the target
vehicles. Notice how even objects over 50 meters away on steep slopes are accurately localized.

Abstract— Accurate localization of other traffic participants
is a vital task in autonomous driving systems. State-of-the-art
systems employ a combination of sensing modalities such as
RGB cameras and LiDARs for localizing traffic participants,
but monocular localization demonstrations have been confined
to plain roads. We demonstrate — to the best of our knowledge
— the first results for monocular object localization and shape
estimation on surfaces that are non-coplanar with the moving
ego vehicle mounted with a monocular camera. We approximate
road surfaces by local planar patches and use semantic cues
from vehicles in the scene to initialize a local bundle-adjustment
like procedure that simultaneously estimates the 3D pose and
shape of the vehicles, and the orientation of the local ground
plane on which the vehicle stands. We also demonstrate that
our approach transfers from synthetic to real data, without
any hyperparameter-/fine-tuning. We evaluate the proposed
approach on the KITTI and SYNTHIA-SF benchmarks, for
a variety of road plane configurations. The proposed approach
significantly improves the state-of-the-art for monocular object
localization on arbitrarily-shaped roads.

I. INTRODUCTION
With the advent and subsequent commercialization of
autonomous driving, there has been an increased interest in
monocular object localization for urban driving scenarios.
‘While recent monocular localization methods [1], [2] achieve
better localization precision when compared with stereo
methods, they are confined to scenarios where the road
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is (very nearly) flat. Other monocular object localization
systems [3], [4] too have such a limiting assumption.

Reconstructing vehicles from a monocular camera is a
challenging task, owing to several factors, such as dearth of
stable feature tracks on moving vehicles, self-occlusion, and
is ill-posed if the camera itself is in motion. To overcome
them, discriminative features [5] and shape priors [2], [6]
have been used to pose a bundle adjustment like scheme [2]
that solves for the shape and pose of a detected vehicle,
assuming a prior on the shapes of all instances from a
category. Use of shape priors results in a richer representation
of reconstructed vehicles (3D wireframes rather than 3D
bounding boxes).

We present — to the best of our knowledge — the first
results for monocular object shape and pose estimation on
surfaces that are non-coplanar with the moving ego vehicle.
We approximate road surfaces by local planar patches and
use semantic cues from vehicles in the scene to initialize a
local bundle-adjustment like procedure that simultaneously
estimates the pose and shape of the vehicles, and the
orientation of the local ground plane on which it stands.
Using the proposed approach, we accurately reconstruct
vehicles, predominantly using cues from a single image only.
This method works across a variety of road geometries
and improves the vehicle localization accuracy on extremely
steep and non-planar roads substantially.

To evaluate our approach, we use KITTI [7] and
SYNTHIA-SF [8] benchmarks. While sequences from KITTI
[7] dataset only have mild-to-moderate slopes and banks,
it provides a fair comparison with other baselines [1], [2].
Whereas, SYNTHIA-SF [8] has extremely steep roads and



demonstrates the efficacy of the proposed approach in adapt-
ing to a wide range of road surfaces.

II. RELATED WORK
In this section, we briefly review the relevant literature and
contrast it with our proposed approach.

A. Shape Priors

Shape priors have been widely used in [6], [9], [2] to ease
the task of object reconstruction. The underlying hypothesis
is that the shape of any instance from a category can be rep-
resented as a linear combination of the deformations of the
category’s mean shape along certain directions, called basis
vectors. This linear subspace model was used to formulate a
stochastic hill climbing problem in [6] to estimate the shape
and pose of a vehicle in a single image. However, this is
prohibitively slow to be used in real-time.

B. Monocular Localization in Urban Driving Scenarios

Estimating the 3D shape and pose from a single image has
attracted a lot of interest in recent years, supported with the
availability of datasets like KITTI [7] and ShapeNet [10].

Approaches like [1], [11] follow a 3D-2D pipeline that
involves modeling the 3D shape offline and then solving
for 3D deformations in it using localized 2D keypoints in
RGB image as evidence, overcoming the need to explicitly
estimate the 3D keypoints. [1] presents an approach to
estimate the 3D shape and pose of the vehicles from a single
image. The 3D shape of a vehicle is modeled using a shape
prior based on a linear subspace model and deformation
coefficients are estimated by solving an optimization problem
with 2D keypoints, localized using a CNN.

In [3] and [12], the authors develop a real-time monoc-
ular SfM system using information from multiple image
frames. However, vehicles are represented as 3D bounding
boxes. It was demonstrated in [2] that having a richer
representation for the vehicle (3D wireframe), significantly
boosts localization accuracy. Mono3D [13] trains a CNN that
jointly performs object detection in 2D and 3D space and
estimates oriented bounding boxes for vehicles. Although
it outperforms stereo competitors, it assumed planar road
surfaces.

Similarly, [1], [2], [3], [12] rely on the coplanarity as-
sumption for the localized vehicle and the ego car. Most of
these methods use the approach outlined in [4] to estimate
the depth of a vehicle under the coplanarity assumption.

C. Monocular Road Surface Reconstruction

There is relatively little work on road surface estimation
from a monocular camera. In [14], the authors propose a
simple road edge prediction framework using edges and lanes
detected in earlier frames. No surface level reconstruction is
provided. In [15], road width and shape of the drivable area
are estimated using a Conditional Random Field (CRF).

In contrast to the above approaches, the proposed approach
is independent of the road plane profile of vehicles and is
capable of accurately localizing the vehicles. The method
outperforms the current best competitor [2] by a significant
margin, highlighting how the existing approaches fail to deal
with vehicles on arbitrarily oriented road surfaces.

III. GEOMETRY AND OBJECT SHAPE COSTS

A. Background: Shape Priors

In this section, we outline our approach to reconstruct
vehicles on arbitrarily oriented roads surfaces.

Along the lines of [6], [1], [2], we assume that each vehicle
(in this case, a car) is represented in 3D by a wireframe
consisting of K vertices (we use K = 36, according to
the setup illustrated in Fig. 4), each of which has a unique
semantic meaning. For instance, these vertices correspond
to locations of headlights, tail lights, wheel centers, rooftop
corners, etc. that are easily identifiable across all cars. We
use a set of aligned 945 CAD models of cars from the
ShapeNet [10] repository and annotate each of them with
K keypoint locations in 3D. We then use the render pipeline
presented in [16] to synthesize a dataset comprising about 1.2
million images of rendered cars with annotated 2D keypoint
locations. Over this dataset, we train a keypoint localization
network based on the stacked-hourglass architecture [5]. We
use this CNN, trained entirely on synthetic data, across
all experiments reported in this work. We observe that the
network generalizes well to real data, consistent with the
findings in [17].

Using notation from [2], we denote the mean wireframe
for the vehicle category by X € R3X. The basis vectors are
stacked into a 3K x B matrix denoted V. The deformation
coefficients (also referred to as the shape parameters) \ €
R uniquely determine the shape of a particular instance.
If we assume that the object coordinate frame has a rotation
R € SO(3) and translation ¢ € R? with respect to the camera
center, any instance X can then be parameterized by the
shape prior model as (pictorially illustrated in Fig. 4)

X=R(X+VA) +1 1)

Here, R = diag([R,R,...,R]) € R3¥ 3K and { =
(747, 1) e R, X = (X7, X7, .., XE)" is an
ordered collection of the 3D locations of the keypoints in
the mean wireframe.

Fig. 4. Illustrating linear combination of deformations of a mean shape
along its basis vectors to produce any other shape in the category

If we denote the locations of an ordered collection of 2D
keypoints by & = (21,41, ..., ijf()T € R?X | the pose (R, t)
and shape (\) of the vehicle can be obtained by minimizing
the following objective function in an alternating fashion -
once for pose, and once for shape.

min g, = i (R(X+VA) + Lo fyrcore, ) =l3 @)

7wk () is a vectorized version of the perspective projec-
tion operator, which takes in K 3D points and computes
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Fig. 3.

Illustration of the proposed pipeline. The system takes 3 consecutive frames (in case of no lane markers). In the upper half (blue arrows), we

illustrate the method for estimating the ground plane i.e. using dense correspondences over the frames and then performing bundle adjustment. In the lower
half (red arrows), the detected bounding boxes in each frame are processed using the proposed keypoint localization CNN to obtain 2D locations of a
discriminative set of semantic parts. The pose and shape of the object are then adjusted by incorporating the estimated ground plane information.

their image coordinates, given the camera intrinsics p =
(fz, fy, ca, cy). Specifically, mx is the following function.

fuX
(XY, 2) ) =
fyZ tey
T
e (T s XI5 2) = (w(X03)7s cm(Xc5 1))
B. System Setup 3)

We operate on image streams captured by a front-facing
monocular (RGB) camera mounted on a car. The height H
above the ground at which the camera is assumed to be
known a priori (this helps in resolving scale-factor ambiguity
in monocular reconstruction).

We assume that, on each incoming image, an object
detector [18] runs and detects vehicles in the image (as
bounding boxes). We also perform a semantic segmentation
of the input image using the SegNet [19] convolutional
architecture. The proposed pipeline is illustrated in Fig. 3.

C. Reconstruction of Vehicles on Slopes

To formulate a lightweight, yet robust optimization prob-
lem for reconstructing vehicles on non-planar road sur-
faces(i.e. roads with slopes and banks), we assume that the
road is locally planar. By this, we mean that the patch of the
road that lies exactly beneath a detected vehicle is assumed
to be a planar patch. This assumption is corroborated by [3],
where allowing each vehicle to have an adaptive local ground
plane boosts localization accuracy.

Each detected vehicle v is on a planar patch parameterized
by (nZT, dy), where ng is a vector that denotes the normal
to the planar patch and d denotes the distance of the planar
patch from the origin of the camera coordinate frame.

D. Resolution of Scale-Factor Ambiguity

Monocular camera setups inherently suffer from scale-
factor ambiguity, i.e., any 3D length estimated from a set
of images is accurate up to a positive scalar. But, for the
autonomous driving applications, we require that vehicles
are localized in metric scale, i.e., in real-world units (such
as meters, for instance). We resolve scale ambiguity using
one of the following two approaches.

Using Dimensions of Detected Lanes: Most roads have
lane marking or zebra crossings of standard dimensions
that are known to us a priori. We use the method from
[20] to detect lane markings, and if we know the height
of the camera above the ground and the dimensions of the
lane markings, we can retrieve the planar patch comprising
the lane marking and the distance to that lane marking (in
meters). Such a method estimates the local ground plane (of
a lane marking near the vehicle) using information from just
a single image.

Using 3-View Reconstruction and Camera Height: The
above method can only be employed on roads where there
are lane markings and in particular only if a lane marking is
detected near a vehicle, which is not true for all scenarios we
encounter. In the more general case, we can recover absolute
(metric) scale by using the following 3-view reconstruction
scheme. Assume we have three consecutive frames f1, fo, f3
with sufficient parallax. We use DeepMatching[21] for es-
tablishing dense correspondences between frames f; to fo.
Then, using a sufficient mix of road and non-road points, we
estimate the egomotion between the frames using standard
multi-view motion estimation techniques [22]. Using the
estimated egomotion, we triangulate points close' to the car
that lie on the road surface and add points from frame f3 to
the reconstruction®. A local ground plane patch can then be
estimated by estimating a dominant plane from the obtained
point cloud using a RANSAC-like routine. Once such a plane
is obtained, we can scale the reconstruction such that the
median of the Y-coordinates of the estimated plane is roughly
equal to the height of the camera above the ground (which
is assumed to be known during initial setup).

'We expand the car bounding box by a factor of 1.9 to 2.0, and pick
all points from the expanded bounding box that are classified as road by
SegNet [19].

2This is typically done by propagating feature matches from frame fo
to frame f3, and running a resection routine to estimate the egomotion
between frame f1 and frame f3, and then triangulating points from f3 onto
the initial reconstruction [22]
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Fig. 5. How does ground plane help? From top to bottom - (i) Illustrating
how coplanarity assumption results in incorrect initialization in existing
approaches (ii) Relying only on minimizing the reprojection error, leaves
the optimizer free to rigidly transform the mean car (iii) Joint optimization
constrains the car to be on ground while minimizing the reprojection error,
resulting in more accurate reconstruction and localization (n. and ng are
car base and road plane normals respectively) (iv) Failure of coplanarity
assumption for steep roads on SYNTHIA-SF [8]. Notice the incorrect
initialization of the car on slopes via method proposed by [1], shown in
red. Our method is not bound by this coplanarity assumption and initializes
the vehicle correctly, shown in black. We overlay the initialized wireframe
on the ground truth 3D points for comparison.

E. Joint Optimization for Ground Plane and Vehicle Pose

and Shape Estimation

Equation 2 represents the optimization problem that is
solved to estimate the shape and pose of a vehicle from just
a single image or from a pair of images whenever available
[2]. However, this formulation assumes coplanarity of the
ego car and of the object being reconstructed. We illustrate
in Fig. 5 that drastic errors in localization result when the
assumption does not hold and how using the local ground
plane circumvents this problem.

We assume that, in the current frame, a set of vehicles V
have been detected by the object detection network [18]. For
a particular vehicle v € V, we let X denote the coordinates
of the i*" keypoint of the vehicle in 3D. Also, we parametrize
the local ground plane beneath v by its normal vector n, and
the distance of the plane from the camera origin dg. Also,
we denote by ny the normal of the car. The normal of the
car is defined as the normal of a plane that best® fits the
keypoints corresponding to the wheel centers of the cars.

We now formulate a set of cost functions that relax the
coplanarity assumptions in [1], [2] and estimate the vehicle’s
pose and shape as well as the equation of the ground plane
patch beneath it.

Ground Plane Estimation: We define a ground plane es-
timation loss term, which encourages the vehicle to be close
to the ground plane. Specifically, we obtain the translation

3 Although, in practice, all 4 wheel centers of a car are coplanar, it may
still be numerically hard to determine a plane equation that satisfies all 4
points. So, we fit a plane in the least squares sense to the 4 wheel centers.

vector t¥ to the bottom of the vehicle v* from the camera
center. This, in an ideal setting, represents the position vector
of a point on the ground plane, the points of which are
denoted as X;’. Formally, this term (for all vehicles in the
image) can be represented as follows,

Ly=>Y |ng-t2—dy|? 4)

veVY

Normal Alignment: The normal alignment loss term stip-
ulates that the normal of the vehicle (n?) must be encouraged
to be parallel to the normal of the estimated ground plane.
An initial guess for the ground plane normal is obtained as
described earlier, using either lane markings, or a 3-view
reconstruction. This loss can be denoted as follows. x(.,.)
denotes the vector cross product.

o= 31 % (nfnd)|? (5)

veVy

Disambiguation Prior: The above loss term has one draw-
back in that, it is minimized even when the estimated ground
plane and vehicle normals are anti-parallel. To disambiguate
such unwarranted solutions, we make use of the fact that
even the steepest roads in the world have slopes less than
25 deg [23]. Whenever multiple solutions are available, we
encourage the solution that’s more upright to have a lower
cost. If e5 denotes the Y-axis of the camera coordinate system
(i.e., the axis vertically pointing down), we formulate the
disambiguation prior as follows (e is a tiny positive constant
that provides numerical stability).

Li=)

veV
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Base Point Priors: We also use a loss term that encour-
ages points along the base of the car (this includes keypoints
on the car wheel centers, bumpers, etc) to lie as close to the
estimated ground plane as possible. If X, is a keypoint on
the car base, and /Cp denotes the set of all keypoints that
lie along the base of the car, base point priors are imposed
using the following expression.

Ly=>" " |ln¥ -t —n- X (7)

veEY XL ER

Global Consistency: Although we assume that each vehi-
cle has its own planar ground patch, it is safe to assume that
road planes are not susceptible to abrupt change. This is en-
coded into the global consistency loss term, that encourages
the planar ground patch of a vehicle to be consistent with
that of other vehicles around it. If V" denotes the set of all
vehicles within a distance d around vehicle v (v is usually
chosen to be 5 — 7 meters), the global consistency loss term
is as follows.

Lo=3 > g —ng 1P+ ldy —dy" > @
veEV vneyn

4We first obtain the rigid-body transform to the origin of the vehicle
coordinate frame, and then concatenate to it the rigid-body transformation
from the origin of the vehicle coordinate frame to the bottom of the vehicle.



Dimension Regularizers: We also place priors on dimen-
sions of vehicles that we observe, which provides a well-
conditioned problem to work with and leads to better con-
vergence rates. We use regularizers similar to ones proposed
in [2], and denote the loss term by L,.,.

Overall Optimization Problem: The overall minimization
problem involving all the energy terms can be posed as
follows (cf. Eq 24568 7).

min L =n.L r r
R7t,>\7ni’7d’g’7n’é total = Nrkr +1glg + Nnkn o)

+ ndcd + nbﬁb + nc»cc + nregﬁreg

Here, 1, 1g, Mns Nd> Mb» N, and 1,4 are weighing factors
that control the relative importances of each of the loss terms.
In practice, 7, 1¢, 114, and 7, are more dominant compared to
the other terms. The actual values of these weighing factors
do not really matter as long as the above terms are properly
weighted.

The above problem is minimized using Ceres Solver
[24], a nonlinear least squares minimization framework,
using a Levenberg-Marquardt optimizer with a Jacobi pre-
conditioner. In addition, each term is composed with a Huber
loss function, to reduce the effect of outliers on the solution.

IV. EXPERIMENTS AND RESULTS

We perform a thorough quantitative and qualitative anal-
ysis of our approach on challenging sequences from KITTI
Tracking [7] and SYNTHIA-SF [8] benchmarks. These se-
quences are chosen such that they capture a diverse class
of road plane profiles viz. uphill, downhill, combinations of
them, and even banked road planes. We compare the 3D
localization error of the proposed method with the current
state-of-the-art monocular competitor [2], and demonstrate
significant improvements. Through a series of systematic
evaluations, we demonstrate that ground plane estimation
is vital for accurate localization on roads surfaces with
pitch and banks. We also demonstrate that our method is
independent of the road plane profile on which vehicles are
to be reconstructed. In other words, unlike others (such as
[1], [3], [13]) we do not assume that the ego car and the car
to be reconstructed are on the same road plane.

Dataset: We use the KITTI Tracking [7] benchmark to
evaluate our proposed method. Sequences numbered 1, 3,
7, 8,9, 10, 11 and 20, which contain a large number of
vehicles located on roads with varying plane profiles, were
used for evaluating our approach. But, KITTI [7] has only a
limited number of steep slopes and banks. So, we also select
about 200 vehicles located on challenging plane profiles from
sequences numbered 1, 2, 4, 5 and 6 of the SYTHIA-SF [8]
dataset. To ensure fair comparison, we evaluate the previous
best monocular competitor [2] on the same sequences.

Keypoint Network Training: The proposed network was
trained on the Torch framework [25] with more that 1.2
million images generated synthetically using the modified
render pipeline presented in [16]. A train-validation split of
75 — 25 % was used. The keypoint network was trained for
7 epochs on NVIDIA GTX TITAN X GPUs (~ 36 hours).

Our Method for
challenging roads

Our Method for
all types of roads

Murthy et al.[1] for
challenging roads

Murthy et al.[1] for
all types of roads
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Fig. 6. Histograms showing distribution of localization errors; challenging
roads mean slopes, slanted roads, banked roads, etc.

Fig. 7. Left: Predicted depth of a car on a steep slope. We compare our
method’s predictions with [2] against the ground truth. Right: Localization
error for the same car using the proposed method and [2].

A. Localization Accuracy

To evaluate localization precision, we compute the mean
Absolute Translational Error (ATE) of the vehicles (in me-
ters) of the approaches considered against the available
ground truth information. We present these results in Table
I, Table II and Table III. While Table I captures the overall
performance of our approach on KITTI [7] dataset, Table
II presents an analysis of the performance of our approach
on KITTI[7] sequences with cars on roads with some pitch
or banking angle, or parked on pavements. In Table III, we
perform a thorough analysis of our approach on SYNTHIA-
SF [8] which has extremely steep roads, and demonstrate
the efficacy of the proposed approach in adapting to a wide
variety of road plane profiles.

We outperform the current best monocular localization
result of [2] on the KITTI benchmark [7] by a significant
margin. It is important to note that in [2], the shape priors
comprised 14 keypoints per vehicle, whereas we use a
different shape prior model comprising 36 keypoints per
vehicle. However, to emphasize that this improvement does
not stem from more expressive shape prior used in this work,
we re-implement the approach in [2] using our learnt shape
priors and provide an ablation study to further drive the point
home. This highlights the importance of the inclusion of
ground plane in localization. As shown in Table I, we achieve
a mean localization error of 0.86 meters, as compared to 2.61
meters in [2]. This is a mark improvement stemming from
the inclusion of ground plane.

We also address challenging sequences with road slopes on
KITTI [7] and provide our localization errors in Table II, and
perform an ablation study of our approach to highlight how
our the inclusion of ground plane reduces the localization
error to 0.67 meters, as compared to an error of 2.55 meters
given by [2]. The current state-of-the-art [2] relies on the
assumption that the plane of the target vehicle and ego
vehicle are co-planar. We circumvent this assumption leading
to a highly accurate localization of the target vehicle, in a
more diverse set of scenarios. For vehicles that are close to



TABLE I

BEYOND THE DEPTH OF x METERS RESPECTIVELY)

MEAN LOCALIZATION ERROR (STANDARD DEVIATION IN PARENTHESIS) IN METERS FOR THE VEHICLES EVALUATED USING OUR APPROACH ON THE
KITTI [7] TRACKING DATASET (HERE (< m) AND (>z m) DENOTE THE SET OF ALL CARS WITHIN A GROUND-TRUTH DISTANCE OF x METERS AND

Approach Overall (m) <= 15m <= 30m >30m
Murthy et. al. [2] 2.61(£2.23) | 1.50(£0.96) | 2.52 (£2.16) | 4.30 (£2.83)
Ours (with coplanarity assumption) | 1.00 (+0.77) | 0.67 (£0.50) | 0.94(4+0.69) | 2.19(+1.18)
Ours (joint optimization) 0.86 (£0.87) | 0.55(+0.50) | 0.79 (+£0.79) | 2.16(+1.18)
TABLE I

EVALUATED USING OUR APPROACH ON THE KITTI [7] TRACKING DATASET

Approach Overall (m) <= 15m >15m
Murthy et. al. [2] 255 (£3.16) | 2.32(£2.21) | 2.92 (£3.38)
Ours (with coplanarity assumption) | 0.95 (£0.89) | 0.92(£0.68) | 1.00(£0.96)
Ours (joint optimization) 0.67 (+£0.66) | 0.64 (£0.60) | 0.72(10.71)
TABLE III

EVALUATED USING OUR APPROACH ON THE SYNTHIA-SF [8] DATASET

MEAN LOCALIZATION ERROR (STANDARD DEVIATION IN PARENTHESIS) IN METERS FOR THE VEHICLES WITH CHALLENGING ROAD PROFILES

MEAN LOCALIZATION ERROR (STANDARD DEVIATION IN PARENTHESIS) IN METERS FOR THE VEHICLES (INCLUDING CHALLENGING ROAD PROFILE)

Approach Overall (m) <= 15m <= 30m >30m
Murthy et. al. [2] 76.34 (£94.03) | 54.21 (£47.93) | 66.28 (£88.74) | 86.40 (£99.32)
Ours (with coplanarity assumption) | 32.03 (£45.60) 6.3 (£19.17) 21.76 (£65.76) | 42.31(£25.42)
Ours (joint optimization) 0.92 (+0.93) 0.66 (+0.49) 0.82 (+0.76) 1.23 (+1.11)

Fig. 8. Qualitative results on KITTI[7]. Top: Estimated 3D wireframes (shapes) for selected cars projected on the image, with depth displayed on top of
each car and 3D view shown as inset image. Bottom: Bird’s eye view of the cars overlaid with their respective ground truth bounding boxes (in red).
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Fig. 9. Qualitative results on SYNTHIA-SF[8]. Top: Estimated 3D wireframes for selected cars (on different road profiles) projected on the image, with
depth displayed on top of each car. Bottom: visualization of the estimated wireframe in 3D, overlaid on dense ground truth 3D scene points.

the car, we achieve a high degree of precision (mean error
of about 0.67 meters, with a low standard deviation as well).

steep road surfaces with several non-planar profiles. [1]
fails completely in the task of accurate shape estimation
and localization of objects in such scenarios, due to the

To further evaluate our approach, we test it on the ex- . . .
pb coplanarity assumption. Moreover, the method given by

tremely challenging SYNTHIA-SF [8] dataset which has



[2] fails drastically in non-planar surfaces, giving a mean
localization error of 76.34 meters, amplified by the sparse
set of keypoints (14 keypoints are used, as opposed to ours,
which uses 36) leading to large localization errors. Our
system achieves a mean localization error of 0.92 meters, the
results of which are shown in Table III. The proposed method
generalizes well to different plane profiles and performs
significantly well. Once again, we stress the importance
of ground plane and exhibit how its inclusion helps us to
perform significantly better as compared to the approach of
[1], which assumes coplanarity of the vehicles and ego car.
Fig. 6 shows the error distribution of our approach (first two)
and for the approach proposed in [1] (last two); Fig. 7 shows
the trajectory and localization error for a car in KITTI [7].

B. Qualitative Results

We showcase the qualitative results of our approach on
challenging KITTI [7] and SYNTHIA-SF[8] scenes with
moderate to high slopes. For KITTI [7], in Fig. 8, we overlay
the final estimate of the car in 3D along with the ground truth
3D bounding box to show how our approach estimates the
vehicle shape and pose accurately. For SYNTHIA-SF[8], in
Fig. 9, we overlay the estimate of the car after shape and pose
adjustment on the ground truth scene points to highlight the
accurate shape and pose estimation of the car.

C. Summary of Results

The cornerstone of this effort was to highlight that the
presence of non-planar road profiles leads to an unsuccessful
pose estimation of cars in urban scenarios by the current
state-of-the-art approach, due to the fact that it relies on the
coplanarity of the ego vehicle and the car. Our proposed
approach is independent of the plane profile on which the
car is located. We improve localization accuracy by a large
margin through the joint estimation of ground plane in KITTI
[7] sequences regardless of whether or not they contain
slopes. (cf. Table I and Table II). The importance of the
proposed approach is highlighted in Table II, where we
achieve a performance boost of about 4 times in scenes with
moderate slopes. For an overall comparison on KITTI [7],
we evaluate our approach on scenes with different planar
and non-planar road surfaces and show an improvement
of about 3 times. We further present the performance of
our approach on SYNTHIA-SF [8] which has extremely
steep roads, resulting in a catastrophic failure of the current
state-of-the-art monocular shape and pose estimation [1].
Our performance is significantly improved in such scenes,
irrespective of the road profiles, the results of which are
reported in Table III. We also perform an ablation study,
reported in Table I, Table II and Table III, to highlight the
importance of our ground plane estimation policy, and show
that it provides a significant performance boost over just the
utilization of a well-constrained 36 keypoint shape prior.

V. CONCLUSIONS
We presented an approach for accurate 3D localization
and shape estimation of vehicles on steep road surfaces.
Where, most current monocular localization systems assume
coplanarity of the vehicle to be localized and the ego car,
we get around this requirement by incorporating and jointly

estimating ground plane cues. We validate this claim by
showcasing significant improvements over the state-of-the-
art monocular localization methods. Heavy traffic situations
- where not much of the road surface is visible - are a failure
mode for the current approach, and we solicit future work
in this direction.
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