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Objective

Estimate the 3D pose and shape (wireframe) of static/dynamic vehicles on varying road
profiles from a moving monocular camera



Objective

https://www.youtube.com/watch?v=C FKgOHTfw4



https://docs.google.com/file/d/1gLXs0yib9XFLaHe_LI32JVxSXvcoR_DW/preview
https://www.youtube.com/watch?v=C_FKg0HTfw4

Why is it difficult to reconstruct/localize dynamic vehicles
from a moving monocular camera?

Challenge 1: Conventional triangulation fails if the object is moving

! Incorrect triangulation
! and hence corrupted pose
i and shape (i.e. 3D and R,t)
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Challenge 2: Monocular multi-body SLAM solutions require us
to solve for multiple scales For unification. And even after
unification, we will have to resolve the scale to get the
localization in metric units.

BOT + BOT +

Image Sequence

VSLAM

[ Feature Detection & Tracking ] [ Motion Segmentation ] LVisual SLAM & Tracking pipeline J [ Unification ]

Kundu et al. ICCV 2011



Can we use a single image to avoid motion in the scene?

Challenge 3: Monocular cameras are bearing only
sensorsi.e. they only preserve the angle to the
point and not the distance. That is, we have scale
ambiguity.




What if we know the structure of the vehicle to be localized?
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Challenge 4: We will have to have the structure of all the vehicles which will be
encountered during operation. This is not a feasible solution as the model of
vehicles keep changing



What if we had mathematical models which completely
defined object categories?

Shape Priors

A mean shape and a set of deformation basis vectors constitute the
shape prior.

K «—— Number of basis shapes
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It is @ mathematical model which defines a manifold of all possible
shapes of objects of the corresponding category.



Object Representation: We use 36 keypoints to represent a
vehicle (car).

Why?
- Better and richer representation of objects (car in this case)
- Generates more constraints for optimization, meaning better
reconstruction/localization




Learning the Shape Prior For a Category

Unlike Few previous methods, where objects are annotated in
2D and then lifted to 3D, we rely on 3D models from
ShapeNet, rendered using Blender.




Challenge 5: Annotation of keypoints on 3D object is quite
time consuming as it requires multiple view changes to achieve
full annotation.

To overcome this problem, we annotate the 2D projections of the 3D
models and then using simple multiple view geometry we reconstruct the
2D annotations in to 3D.
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Generating 3D representation of cars

T T

Render model from 3 different views

{7)
Annotate left side of each view

=~ )

Reconstruct the left side of the car

Different car models

<

Get 3D representation of

Reconstruct the full 3D using
symmetry
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Magnitude of learnt basis ve

Once we have the 3D for different type of cars, we compute
the mean of all the keypoints to get the Mean Shape and
use PCA (Principal Component Analysis) to learn the Basis
(deformation) Vectors

Mean car shape



Magnitude of learnt basis vectors

Once we have the 3D for different type of cars, we compute
the mean of all the keypoints to get the Mean Shape and
use PCA (Principal Component Analysis) to learn the Basis
(deformation) Vectors

= ~ Deformations happen in a rather
lower dimensional space (~15) as

~compared to the overall dimension .
/ (here 108, but we show only ~40)
\ e

Mean car shape



Deforming mean shape along basis vectors to get a
different valid shape of car

K «—— Number of basis shapes
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How deforming along different basis vectors affect the
shape of the new car




Detecting 2D keypoints of cars using CNN

We generate millions of 2D images of the 3D models from multiple view points
and background conditions. As we know the 3D structure, we are also aware of
their 2D projections i.e. the 2D keypoints of the cars.

With those millions images and corresponding 2D keypoints we train a CNN that
would predict the 2D keypoints of cars during the test phase

We use a stacked hourglass network architecture with 2 hourglass modules.







Challenge 6: Now that we have detections and the model|,
can we estimate the pose (localize) and shape (reconstruct)
of the vehicle?
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Detécted 2D keypoints Model ( shape prior)
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Shape parameters

Bundle adjustment
like cost function

Estimated 6DoF pose and 3D shape



Well, the answer is NO

The problem is ill-posed when shape and pose are to be estimated
simultaneously.

If shape is known, pose can be obtained by PnP (Perspective n-point Pose).

If pose is known, shape can be obtained by fitting a category-specific
model.

But, neither we know the pose nor we have the exact
shape of the vehicle of interest



Solution: Decouple the pose and shape estimation

Step 1: Pose adjustment- Estimate a rough pose using the mean
shape while fixing the shape parameters

}rznth}\ﬁr = ||mx (R (X + V) Ht fmafyacxacy) — 3A7||%

Step 2: shape adjustment- Estimate a precise shape parameters
while Fixing the pose

{?nfil}\ﬁr = ||mx (R (X + VIA) Ht fmafyacxacy) - 3A7||%

Keypoint detection Pose adjustment Shape adjustment Localization/reconstruction




Note that the functions stated above are highly non-linear
and would require a good initial estimate to converge to
the right minima

Initialize the car’s pose:

Using the camera height prior, detection bounding boxes, and an
estimate of the car’s orientation , we can easily infer a rough estimate of
the pose of the car.

Cam height




Few Relevant Prior Art
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Murthy et al. IROS 2017

Ziaetal CVPR 2015



Few Relevant Prior Art
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They do not tackle vehicles on arbitrary road
profiles.

Ziaetal CVPR 2015
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But, what if the cars of interest
and the ego car do not share
the same plane.

Image source: http://sfcitizen.com/blog/tag/steep/page/2/



Methods that rely on coplanarity assumption severely Fail
to reconstruct or localize objects
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Results obtained from Murthy et al. IROS 2017 on Synthia-SF dataset



Why do such methods Fail?

This is where the car should have
been initialized

Incorrect initialization leads to incorrect
results owing to the non-linear nature of
the optimization

> Incorrect initialization

.

Cam height

The optimizer is free to adjust the pose
rigidly to get a low reprojection error, i.e.,
hence can in many cases produce pose
that is either above or below the road
plane.

Free for any rigid transform



Contributions

We demonstrate — for the first time — accurate localization (pose) and
reconstruction (shape) of vehicles on steep and graded roads from a single
moving monocular camera

We propose a novel joint optimization formulation for accurate pose
(localization) and shape (reconstruction) estimation of cars, predominantly using
cues from a single image.

We introduce novel cost Functions to narrow down the solution space leading
to a more reliable and accurate localization and reconstruction.

We propose a simpler method to learn the shape prior that does not require us
to annotate the semantic keypoints in 3D - already explained above



So, how do we get rid of the coplanarity assumption?

We propose a joint optimization framework that
optimizes for object and road plane in a coupled
Fashion.



We say that the road is locally planar and the object’s (car)
plane is the same as the local road plane.

(obviously, as cars generally don’t float in space.)

Local road plane




Except for this one

Currently (Dec 30, 21) it is somewhere here
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Image source:

https;//www.inverse.com/article/4164 1-when-will-elon-musk-roadster-crash-into-e Image source: _
arth https.//www.whereisroadster.com/



Overall Pipeline

)

Consecutive Frames Estimated Pose and Shape

Jointly optimize

[

Object Detection Keypoint Localization via
proposed Hourglass Network

Localized Keypoints



Road reconstruction: we use multi-view to reconstruct the road points.

ﬁe to absence of sufficient (reliable) features on road: We use \
DeepMatching (Revaud et al. IJCV 2016) and SegNet (Badrinarayanan et
al. TPAMI 2017) for establishing correspondences and infer about road,
respectively.

k Dense Correspondences Semantic Segmentation J

Multi-view reconstruction

R,R ,t t

e g |
Reconstruct using 3D
normalized 8-point Bundle
Adjustment

Resection

Optimized
3D,R, t

Scale the road points to metric units using
camera height prior. Note, this works as the road is
static and a single scale would work for all the
static scene elements. This, however, is not valid
for dynamic elements

Reconstructed road points



Components of our proposed joint optimization
framework:

Similar to what have been explained in

Shape and pose adjustment ]4/ the previous slides

Local ground plane estimation

Constrain the car on the its local ground plane
Normal Alignment

Disambiguation prior

Base point priors

Global consistency

Reqgularizers



fLocal ground plane estimation and local ground plane constraint

Points near (within a 3D bounding box)
the car for the local ground plane

Constrains the cars to be on/near the ground plane £, = Z [|ng -t — dg ||2
veY

~

f Normal Alignment

Constrains the car base plane to be W \
aligned with the local ground plane. * \

In other words their normals should be
parallel T —

Lo=Y" 1 x (n2,n2)?

n : Normal of the local road plane
veEY e

n: Normal of the car base
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Base point priors: @ Base points of the car

As the caris on the road, all the base points of
the car (plus some offset for car wheel) should
lie on the road plane

Lo=> Y [nt-t&—nl X?

veY XbEICb

.

\ Road points
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Global consistency

Nearby cars share the same local
ground plane
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Regularizers

1.

2.

3.

vk

Dimension regularizer - the size of the car should not exceed some predefined

threshold

Translation regularizer - The translation of the estimate should not be too far from
initialization

Symmetry regularizer: The cars should exhibit symmetry about its medial plane
Roll angle regularizer: The orientation of the car should not exhibit high roll angle
Yaw angle regularizer: Cars yaw angle should be close to the initialization as these
initializations come from decently accurate sources

4 N

Over all cost function

Shape and pose cost
Y
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Why do our costs actually work?

The mean pose/shape is always bound
to rigidly transform such that
it stays on the road.

Remember, why other methods performed poorly! i 0

40 30 25 20 15 10 5 0
They incorrectly initialize and hence incorrectly reconstruct on slopes



Qualitative results on challenging road profiles

SYNTHIA-SF Dataset
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Depth of from camera




Able to accurately
localize cars even at a
distance of 60 m

Coplanarity assumption
severely fails

No temporal information used for car localization



KITTI Tracking Dataset

/

Ground truth shown as red cuboid

Different local road planes




Quantitative results

TABLE 1
MEAN LOCALIZATION ERROR (STANDARD DEVIATION IN PARENTHESIS) IN METERS FOR THE VEHICLES EVALUATED USING OUR APPROACH ON THE
KITTI [7] TRACKING DATASET (HERE (<x m) AND (> m) DENOTE THE SET OF ALL CARS WITHIN A GROUND-TRUTH DISTANCE OF & METERS AND
BEYOND THE DEPTH OF & METERS RESPECTIVELY)

Approach Overall (m) <= 15m <= 30m >30m
Murthy et. al. [2] 2.61 (£2.23) | 1.59(£0.96) | 2.52(+2.16) | 4.30(£2.83)
Ours (with co-planarity assumption) | 1.00 (£0.77) | 0.67 (£0.50) | 0.94 (£0.69) | 2.19(£1.18)
Ours (joint optimization) 0.86 (+0.87) | 0.55(+0.50) | 0.79 (+0.79) | 2.16(+1.18)
TABLE II

MEAN LOCALIZATION ERROR (STANDARD DEVIATION IN PARENTHESIS) IN METERS FOR THE VEHICLES WITH CHALLENGING ROAD PROFILES
EVALUATED USING OUR APPROACH ON THE KITTI [7] TRACKING DATASET

Approach Overall (m) <= 15m >15m
Murthy et. al. [2] 2.55(+3.16) | 2.32(%2.21) | 2.92(£3.38)
Ours (with co-planarity assumption) | 0.95(£0.89) | 0.92(£0.68) | 1.00 (£0.96)
Ours (joint optimization) 0.67 (£0.66) | 0.64(+£0.60) | 0.72(+0.71)
TABLE III

MEAN LOCALIZATION ERROR (STANDARD DEVIATION IN PARENTHESIS) IN METERS FOR THE VEHICLES (INCLUDING CHALLENGING ROAD PROFILE)
EVALUATED USING OUR APPROACH ON THE SYNTHIA-SF [8] DATASET

Approach Overall (m) <= 15m <= 30m >30m

Murthy et. al. [2]
Ours (with co-planarity assumption)
Ours (joint optimization)

76.34 (£94.03)
32.03 (£45.60)
0.92 (£0.93)

54.21 (£47.93)
6.3 (+19.17)
0.66 (+0.49)

66.28 (£88.74)
21.76 (£65.76)
0.82 (+0.76)

86.40 (£99.32)
42.31 (+25.42)
1.23 (+1.11)




Histograms showing distribution of localization errors

Our Method for Our Method for Murthy et al. for Murthy et al. for
challenging roads all types of rojads o Challenging roads all types of roads
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Note: challenging roads mean slopes, slanted roads, banked roads, etc.



Left: Estimated depth of a car on a steep slope. We compare our method’s
localization with Murthy et al. against the ground truth. Right: Localization error
for the same car using the proposed method and the one proposed by Murthy et al.
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Video

3D VISUALIZATION

OUR METHOD (JOINT OPTIMIZATION)

o n o n o sl n o n
n T < m m ~N -~ —

No temporal information used for car localization

https://www.youtube.com/watch?v=C FKgOHTfw4



https://docs.google.com/file/d/1-ZHPJb1HiJHRBE7_5SSXN7-z9hqzeo07/preview
https://www.youtube.com/watch?v=C_FKg0HTfw4
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